skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Caliskan, Tugba D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Original perfluoropolyether (PFPE)-based oligomeric polyurethanes (FOPUs) with different macromolecular architecture were synthesized (in one step) as low-surface-energy materials. It is demonstrated that the oligomers, especially the ones terminated with CF3 moieties, can be employed as safer replacements to long-chain perfluoroalkyl substances/additives. The FOPU macromolecules, when added to an engineering thermoplastic (polyethylene terephthalate, PET) film, readily migrate to the film surface and bring significant water and oil repellency to the thermoplastic boundary. The best performing FOPU/PET films have reached the level of oil wettability and surface energy significantly lower than that of polytetrafluoroethylene, a fully perfluorinated polymer. Specifically, the highest level of the repellency is observed with an oligomeric additive, which was made using aromatic diisocyanate as a comonomer and has CF3 end-group. This semicrystalline oligomer has a glass transition temperature (Tg) well above room temperature, and we associate the superiority of the material in achieving low water and oil wettability with its ability to effectively retain CF3 and CF2 moieties in contact with the test wetting liquids. 
    more » « less
  2. null (Ed.)